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The problem of constructing thg=1/2 nonextensive maximum entropy distributions from redundant and
noisy data is considered. A strategy is proposed, which evolves through the following(st¢pdependent
constraints are first preselected by recourse to a data-independent technique to be discugsgd herdata
are a posteriori used to determine the parameters of the distribution by a previously introduced forward
approach(iii) A backward approach is proposed for reducing the parameters of such distribution. The previ-
ously introduced forward approach is generalized here in order to make it suitable for dealing with very noisy
data.
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I. INTRODUCTION

N
. . . =2 Pufinn 1=1,... M,
Among the generalized nonextensive maximum entropy ! glp” L

distributions, which are defined in terms of a parameter

[1-3], the one corresponding to the valge 1/2 hasplayed

a particular role in diverse contexi$—9]. 1=57
In this paper we focus on developing strategies for con- 1

structing theq=1/2 distribution which is involved in a very o . _

special type of inverse problem: the problem of constructing>ince Pn>0, it is true that|[fyq is the (1/g)-norm of p.

such a distribution on the basis of redundant and noisy datihus, the problem of choosing the parametés equivalent

(by noise we mean errors resulting from the random procest deciding which norm one wants to minimize as preserving

associated with the experimenta| measurement proc)gdure the 1-norm of the distribution. In order to analyze the situa-
It is appropriate to start by discussing why we shall re-tion further let us jgin all constrainis together by defining a

strict consideration to the particular valge1/2. (M+1) XN matrix A of elementsA ,=f;,(i=1,... M;n
The problem of determining p9 probability distribution =1,...N) and ZMJ,l,n:l(n:l, ...N). Hence, the con-

maximizing the entropy straints are expressed in the form

N N

PIFEDIS =Ap,
§= e S wheref® is a vector of(M +1) componentss, ... ,f, 1. Itis
1-q well known from linear algebra that the general solution to

. : this underdetermined linear system can be expressed as
with constraints

'b - A’r—lfo +p',

N

0= I, i=1,... M, ~ ) ~ ,
' E Pafin whereA’! is the pseudoinverse &, andp’ a vector in the
null space of matriXA. Consequently, the problem of decid-

N ing on theq parameter is tantamount to just choosing a vec-
1=, p] tor p’ in the null space ofA. In particular, the choice

n=1 =1/2 (which as already discussed is equivalent to minimiz-
ing the 2-norm of thep distribution) implies to setp’=0.
This follows from the fact that, since vectdr*f° and vector
p’ are orthogonal with each other, one has

has been shown in Reff6] to be numerically equivalent to
determining the probability distributiop minimizing

N
[CEPN IBl5 = [A7H 5 + p'[5.
q
=1
) Hence, by settingy’ =0 the solution of minimum 2-norm is
with constraints obtained. For a number of reasons, which are listed below,
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we believe that this leads to the most suitable choice for th@oses a NP-hard problem, i.e., unreachable in polynomial
parameteq in relation to our problem. time with classical computerd0,11). Hence we are forced

(1) The underdetermined problem we have to solve is oto ascertain suitable suboptimal strategies, which also pose
the following special nature: We have less independent equ#n open problem because there is not a unique way of con-
tions than unknowns, but there is a large number of redunstructing suboptimal solutions. .
dant equations and a number of irrelevant ofigs If the ~_ In some recent publications we have introduced a subop-
data were noiseless, the role of such equations would bdmal iterative strategy, which is only optimal at each itera-
simply to verify the ability of the distribution to make correct tion step[7,8]. Such an approach is a forward data-dependent
predictions. Since the data are noisy we use all the equatio proach for subset selection. At each iteration, the indices

with the purpose of reducing the effect of the noise, but nof tained in the previous steps are fixed, and a new index is
as independent constraing® most cases the number of chosen in such a way that the distance between the observed

ata and the ones predicted by the physical model is mini-

Lagango mplers s much s tan h st unter oz Sne e sdlocton s oy ptalt ach st e
J selected set of indices is, of course, not optimal in the above

|_nde_pendent constram.ts.'Thg pred|ct!\{e power pf_our SOIu'specified sense. Some indices that are relevant at a particular
tion is assessea posterioriby its capability of predicting the step may become much less relevant at the end of the pro-

denoised data. _ cess. It is then natural to try and eliminate the parameters

(2) The constraints typically represent measurements oleorresponding to such indices. Again, the process of reduc-
tained as a function of some variable parameters: Intensityyg parameters in an optimal way is, in general, a NP-
versus diffraction angle, magnetization versus magnetic fieldyroblem and we need to address it by suboptimal strategies.
etc.[12,13. Itis then natural to represent such measurementglere we propose a strategy for reducing parameters that we
as linear functionals on the identical vector. Each linear funceall backward selection. This approach provides both the cri-
tional provides a projection on the particular parameter valueerion for selecting the parameters to be deleted and the tech-
which is specified by the measurement instrument ¢t~ nique for properly modifying the ones to be retained. An
It is clear then that in the space of the data it is appropriate tapproach for selecting independent constraints in the absence
define a distance through the norm induced by the innepf data will also be advanced here, with the aim of designing
product. In our formalism both the space of the data and th& suboptimal strategy consisting of the following steps.
space of the system are assumed to be Hilbert spaces. The(i) Before the experiment is carried out we select a subset
only 1/q norm induced by a Hilbert space is the one corre-Of indices corresponding to independent constraints.
sponding tog=1/2. (i) The forward seleqtlon approach proposed in R&f.

(3) As mentioned above, to choose a valuegobther is then applied for selectln.g |nd|c_es, from the preselected ;et,
thanq=1/2 would imply to let the corresponding distribu- " order to construct the distribution when the data are avail-
tion have a component in the null space of the transformatiof>'¢: . lIv the backward select hi led i
generated by the consirans. In the upe-of pabem de;, (1), ISl e ke seecion soprench s et
f‘i(r:]rItaeedslgai)eat?]?a\;earst?itcrgﬁl;glrlrgljlar(\fr;seﬁi; ggﬁﬁ?gagzzu:)etnbunor). 'Such backward selection is made pOSSIb|Q in a_fast

o "hnd efficient way by means of a backward adaptive bior-
any of the elements of matri would produce an enormous thogonalization technique.
distortion in the solution We certainly wish to avoid this. Before advancing the above described strategy we would

like to discuss how it is possible to adapt the strategy of Ref.

Unfortunately, in our context deciding on the approprigte [8] so as to make it suitable when dealing with very noisy
value of the distribution we wish to construct does not solvedata. This is achieved by introducing a vectorial space with
the problem of its optimal construction. While it is true that inner product defined with respect to a measure depending
the problem of determining thg=1/2 distribution from a  on the experimental data, or their corresponding statistics.
fixed set of constraints is a simple linear probl¢sj, the The paper is organized as follows. The generalization of
problem becomes highly nonlinear when this distribution isthe previous approach, to turn it suitable when dealing with
to be determined optimally from a subset of constraintsvery noisy data, is introduced in Sec. Il. Section Ill discusses
which are taken out of a much larger set of possible ones. the criteria for selecting relevant constraints. First, the selec-

Consider that from a set dfl constraints we want to tion criterion proposed in Ref{7] is generalized and a nu-
select a subset ¢fones and associate a paraméteigrange  merical experiment is presented in order to illustrate the ad-
multiplier) to each equation. Let us indicate p§/?™ the  vantage of such a generalization. We then discuss a data-
distribution associated with the correspondingequations. independent selection criterion. In Sec. Il we introduce a
Hence the problems we have to face are the followmghe  backward procedure for eliminating constraints and, conse-
selection of the optimak constraints andb) the estimation quently, for properly adapting the concomitant parameters of
of the corresponding parameters determining the distribu- the distribution. Section Ill C provides the foundations of the
tion. In order to address these problems, let us specify thetrategy that we illustrate by a numerical example in Sec.
meaning of “optimal selection” in our context: we say that alll D. The conclusions are drawn in Sec. IV.
selection is optimal if it yields a distribution capable of sat-
isfactorily predicting all the available data involving the Il. GENERALIZING THE PREVIOUS APPROACH
minimum number of parameters. Unfortunately the search Let us assume that we are givevl pieces of data
for such an optimal selection is not in general possible, as if$, 3, ... ,f?, ... ,f, each of which is the expectation value
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of a random variable that takes valugg,n=1,... N ac- N N
cording to the q=1/2 probability distribution p%2,n (wlry =2 (wlnxn|r)y = > varp. (8)
=1,...N[7,8], i.e., n=1 n=1
N Using the adopted vector notation, E¢¥) are recast:
o= p%, ., i=1,... M. (1) .
i = n 'in |f0>,u:A,u|p1/2> (9)

The dataff, 3, ...,f7, ... ,fly will be represented as compo- Wwith
nents of a vectotf®), in a vector space, sap™. A central N N
aim of this contribution is to allow for the possibility of 12\ _ 12\ — 1/2
assigning a different weight to each data. Accordingly, the %) = n§1|”><”|p %= Epn In), (10
inner product inDM, which we indicate as([-),, is defined .
with respect to a measuge(m) as follows. and operatoAM:RNHDM(M) given by

For everyf andg in DV,

N

M — Ap. = 2 |fn>p,<n| ' (ll)
LAl = E figimi, (2 n=1

=1 Vectors [f), e DM(u) are defined in such a way that
wheref; indicates the complex conjugate bfin the present (il =fin i€,
situation we deal with real vectors, therelfiys=f;. The data M M
space, with the corresponding associated measure, will be |fn>,u:E |i>m““m<i|f>uzz wif; n|i>w (12)
denoted asPM(u) and the standard orthogonal basis in i=1 =1
DM(u) will be represented by vectot®,,,i=1,... M. The

. : . . In the line of Ref.[7], in order to determine the maximum
identity operator ifDM(u) is thus expressed as 7]

entropy |pY? distribution we consider as constraint of the

M optimization process, a subsetlokquationg1) labeled by
fM = E |i>,u,:U’i,u,<i| (3) indiceslj_,j :_1, K. This leads to the following expression
i=1 for the distribution:

with vectors|i),,i=1,... M satisfying the relations

wiiliy,= & (or 0if y;=0). (4)
Accordingly, vector{f%,, is expressed:

1 1 k N
mW”W:<———EM@mMﬂMSJ§Hm
N Nj:1 n=1

k
M M + 21 AL||J>M/L<IJ|)‘I(>/L 13
. . . i=
19),=> ||>;LMiM<||f°>M=E wiffliY (5 _
i=1 i=1 with

The measures, rendering a weighted distance between two N N

vectors inDM(w), will be chosen in relation to the observed 9),= 2 [T, = 2 An). (14)
data. For example, if the variances of the data are known and n=1 n=1

we denote by? the variance of daté, the choiceui=07%,  The superscripk in [p2®) given above indicates that the
gives Tise to the square distance betwéh, and [g), istribution is built out ofk constraints. The Lagrange mul-
e D(w) as given by tiplier vector \¥) is determined by the requirement that

M 1 Ipt2¥) predicts a complete data vect(f),=A,[p2®)
\Hf")M—|g>M||2:M<f°—g|f°—g>M=E (fP-9)%>=. (6) e DM(u) minimizing the distance to the observed vector
=1 7i ) .. This is actually the prescription given in R¢T]. Nev-
Y23
The above distance is known to be optimal, in a maximunrtheless, the fact that here the distance is defined with re-
likelihood sense, if the data errors are Gaussian distribute8P€Ct 10 @ measure, which we propose to be dependent on the
[14]. experimental data, implies that the formalism of REf]
The space of the physical system is considered to be thgeeds to be adapted to this requirement. In subsequent sec-
EuclideanN-dimensional real spac&". The standard or- 1ions, we discuss how this can be achieved in a straightfor-
thogonal basis ifRN will be indicated by vectorgn),n ward manner by means of a recursive biorthogonalization

=1,... N, so that every vectdr) € RN is represented as  téchnique for computing the Lagrange multipliers which de-
termine|pt/2®),

N N
=2 (ninln) =X ryln). (7)
n=1 n=1 A. Determination of Lagrange multipliers
For any two vectorgv) and|r) in RN the inner product is In order to estimate the Lagrange multipliers determining
defined as Eqg. (13) we minimize the distance between the prediction
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through the physical model and observed data. As discussed (1, \®*Y), = (1A®), = (@ |ay, ), (eaA6D),,
in Refs.[7,8] this entails to determine the Lagrange multipli-
ers as n=1,...k

k

K _ e K oA 4 = ~
2 Jon ), (iN9), = BN, = Py 1), (15) At Ny = (), (22)

=1
with (1A, = (e, [19), /e 2 |
In writing down the above equations we confidently as-
N 1 sume that the indicek,,n=1, ... k+1 are given to us. Of
|a|j>#: > [T wulFalli) = N|g>w<g|lj>' (16)  course, we must choose them somehow. How? The question
n=1 does not possess a unique suitable answer, though. We tackle
this problem below.

where we have denotdazE}‘:ﬂa”)ﬂ(IjL with

Vector |~f°>M is obtained from the data vector §§>M:|f°>M

—(|g>M/N) and IAD\,k is the orthogonal projector onto the sub-
space spanned dynj)wj =1,... k. Here we wish this pro- [ll. SELECTION OF INDICES
jector to account for the different weights of the data. This
will be achieyed by recourse to a biorthogonalization t(—_)ch-be
nigue [15] which, as applied in this context, produces bior-
thogonal vectors dependent on the weight assigned to ea
data.
Given a set of vector$a|n>wn:1, ..M, we set|yy),

The problem of deciding on the indicésn=1, ... k to

considered in the construction of thg/2¥) distribution

is far from being a simple one. One would like, of course, to
oose the smallest set of indices allowing to minimize the

distance between the observed vector and the physical

model. Unfortunately, as already mentioned the search for a

=|e ), and inductively define vectolg.1), as global minimum is an NP-hard problem in most cases. A
sensible simplification is obtained by resigning the goal of

|:l/, ) = |¢k+1>“ (17) global minimization and accepting a less ambitious subopti-

VT o) PP mal solution which arises from the following iterative proce-

dure: At each iteration the indices obtained in the previous
steps are fixed, and a new index is chosen so as to minimize
ieor), = e, ) _p ) (18) the distance between the data vector and the vector predicted
D A R by the physical model. This is basically the strategy of the
The dual vectors(@**,n=1, ... k+1, which are obtained forward selection approach proposed in R¢f&8]. Such
from the recursive e?quations strategy, useful_ indeed in many situations, is just one among
the many possible suboptimal strategies that one can envis-

with

~kt1) _ ~K| s~k = _ age. Here we advance an approach which is built out of two
/"<aln |_M<a'n| #<aln|0"k+1>w<’/’k+1|’ n=1,...k main ingredients(i) a data-independent technique for select-
ing constraints to be discussed in Sec. Il B; anga back-
<~k+1| _ n<¢k+l| _ ,U~<¢k+1| _ <: | ward selection approach for reducing the number of param-
"l T (el Yy et e, * Yl eters of a given distribution. To address the latter we need a
m +1 |k+l I i k+1l Pk+1/ . . . . . .
technique evolving in the reverse direction with respect the
(19 forward technique of Refg7,8]. In this case the two chal-
satisfy the following properties. lenges we have to face are the following.
(8) They are biorthogonal with respect to vectors (@) The one of deciding on the parameters to be elimi-
lag),,n=1,... k+1, i.e., nated. _ .
n (b) The one of appropriately modifying the parameters
M('&I‘:l|a|m>#: i, n=1,..k+1l, m=1,..k+1. one wishes to retain.

(20) These two points are addressed in Sec. Il C by recourse
to a backward birthogonalization approach. Before advanc-
(b) They provide a representation of the orthogonaling our strategy we would like to illustrate how the forward
projection operator ont¥,., as given by selection approach of Refd7,8], can be adapted in a
straightforward manner in order to make it suitable when
dealing with very noisy data. This is the subject of Sec. Il A.

k+1 k+1

PVk+1 = 21 |aln>p,p,<ar:l| = P;r/k+1 = 21 |a:(:1>yﬂ<aln| '
n= n=

(21) A. Data-dependent selection criterion
The proof of(a) and (b) parallels that of Refd.15,16|, for As proposed in Refs[7,8], a set of subindiced,,n
the case of the standard Euclidean measure. =1,... k+1 can be iteratively determined by selecting, at

It follows from Egs.(21) and(15) that the Lagrange mul- iteration k+1, the indexly,, corresponding to a vector
tipliers yielding|p®™2*+D) are obtained according to the re- |e, ), [cf. EQ.(16)] that minimizes the norm of the residual
cursive relation resulting when approximating the observed data by the

021104-4



CONSTRUCTIVE APPROXIMATIONS TO THEg=1/2... PHYSICAL REVIEW E 70, 021104(2004

0.05 . » 1 ' ' ' T by considering a nonuniform measure given gs o 2,i
Prn 004 - . =1,...,100 the approximation is enormously improved and

0.03 |- becomes stable against different realization of the data.

0.02 H.”

0.01 B. Data-independent selection criterion

ot N . This alternative criterion for selecting indices is indepen-
2001 | . dent of the actual data. It is meant to speed up the posterior
002l o selection process and is grounded on the fact that redundant

003k o equations arise as a consequence of a physical mod_el. I_—|ence,

. . L redundancy can be detected without the actual realization of
-0.04 '5 {0 1'5 z;o 2'5 3'0 35 .40 45 50 the experimental measurements. In our formalism, each con-
(a) n straint, thel, one, say, is associated with a vectmk>ﬂ.
Hence the problem of discriminating linearly independent
constraints is equivalent to the problem of discriminating
linearly independent vectors. We address this problem by
recourse to a recently introduced technid@&], which al-
lows for a hierarchical selection giving rise to a stable in-
verse problem. The goal is achieved by selecting, at each
step, the index, maximizing the ratios

_ Nyl

" ol

This data-independent technique for eliminating redundancy
makes the posterior data processing much faster, as the se-
lection of indices for constructing the distribution can be

FIG. 1. (a) The theoretical distribution is represented by the carried out qnly on those |nd|c_es rendering |ndepe_ndent vec-
solid line. Each dotted line corresponds to the approximation ij,o_rs. There is also rpom for different postprocessing _strate-
obtain by using a uniform measute=1) for two different realiza- 9i€S because, specially when the data are very noisy, the
tion of the data(b) The theoretical distribution is represented by the 'umber of required Lagrange multipliers happens to be
solid line. Each dotted line corresponds to the approximation wesmaller than the number of indices rendering “numerical in-

obtain for five different realizations of the experimery weight- ~ dependence.” One possibility is to apply the selection crite-
ing each data with a measugg=o; . rion discussed in the preceding section, but only on the pre-

selected indices. Additional reduction of Lagrange
Qwultipliers is made possible by a backward strategy to be
introduced in the following section.

Pn

n=1,... M. (25

(b)

physical model. This process is tantamount to selecting th
index |4 that maximizes the functiona|g]

~ 12
e,= |M<¢n|f°)ﬂ‘ , n=1,...M (23 C. Reducing Lagrange multipliers

e 1T — — _F As already discussed, the fact that Lagrange multipliers
with = / and = P .
At| ﬁ;’? g pgﬁi”v\uyc\igll d Iik|éb r][i)" iIILC;nt>rgte t\I/lfLaggvantag o of &re associated with constraints that are selected on a step by

allowing different weights for each data. We use the Sam%:)engeblﬁlsral\rr?pélenswutlrt]iatli:rtst?neaer;g\voef é?riiﬁgﬁggorllg\r/%%ecses’
example as in Refl7], i.e., the data are generated as -agrange pler: y o . ’
To be in a position to eliminate Lagrange multipliers of little
50

_ relevance, we need to develop an appropriate technique.
0= pfin+te, i=1,...,100 (24) Consider that we wish to reduce the numberof
n=1 Lagrange multipliers characterizing |p*?®) distribution.

with p, represented by the continuous line of Fig. 1 andEven if we know which particular parameter should be dis-
fin=exp(-nx),x=0.01,i=1,...,100n=1,...,50. This is regarded, the actual process of removing them yields a non-
an extremely bad conditioned problem. In order to have din€ar problem. The nonlinearity follows from Eq15)
good approximation of the distribution of Fig. 1, it was as-Where the Lagrange multipliers in the left-hand side of the
sumed in Ref[7] that we know the data within an uncer- €guation are the coefficients of a linear superposition of non-
tainty of 0.1%. Here we consider the errors to be muchPrthogonal vectors. The right-hand side indicates that such a
larger. Each data is distorted by a zero mean Gaussian disuperposition is the orthogonal projection of the ve¢t6)r#
tributed random variable of variance’ corresponding to onto the subspace generated by Vecﬂ@ﬂls>ﬂ,j:1, ok
20% of the data value. If, as in Ref7], we consider a Thus, within the framework of this paper, the decision of
uniform measuréu=1), the approximation we obtain is rep- eliminating some Lagrange multipliers comes along with the
resented by the dotted lines of Figal (for two different  aim of leaving the vector orthogonal projection onto the re-
realizations of the dajaAs we clearly gather from Fig.(fy), = duced subspace. This entails that we must recalculate the
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remaining Lagrange multipliers. The need for recalculating T 5 | <|].|)\k> |?

coefficients of a nonorthogonal linear expansion, when Py, [Tl = 1Py Fl1° = = (30
eliminating some others, is discussed in Rdf] where a L ”|a">“”

backward biorthogonalization approach is advanced. Such @orollary 1 gives us a prescription to modify the Lagrange
technique, which we describe next, has been devised in ordeultipliers characterizing &-parameters distribution, if one

to modify biorthogonal vectors so as to appropriately repre-of such multipliers is to be removed. Nevertheless, still the
sent the orthogonal projector onto a reduced subspace. question has to be addressed as to how to choose the

Let us recall thavy=spad|a ),, ... ey ),} and letViy,  Lagrange multiplier to be disregarded. Corollary 2 suggests
denote the subspace which is left by removing the vectohOW the selection can be made optimal. The following
lay ), from V, i.e, proposition is in order.

: Proposrtlon 1 Let the Lagrange multlpl|er§<l |)\k> ,n

Wi
Vk,alj=spaI{|a|l)M, .. |a|] i M’|a|]+1 PIREE ,|a/|k>#}. k and <| |)\ > J 1 J+1 k be Ob'

tarned from Eqs(15) and (29) respectively. The Lagrange
(26) multiplier I |)\k> to be removed for minimizing the norm

We have already discussed how to construct the orthogon& the residual errofa), ‘PV|f0> PV |f0> is the one

projector ontoV, [cf. Eq. (21)]. In order to represent the yielding a minimum value of the quant|t|es
orthogonal projector onto the reduced subspa@e the cor-

2

responding biorthogonal vector&I ), need to be modified M i=1,...M. (31)
as established by the following theorem |||a|k->lb||2

Theorem 1Given a set of vectortaI D . K bior- -
thogonal to vector$a, D K and yreldrng a repre- Proof. Since on the one ha”av ka/ =Py, ka PVk/a,
sentation oiPV as grven in Eq(21) a new set of biorthogo- and on the other hand orthogonal prOJectors are |dempotent
nal vectors |a| ) yee—1,j+1, ..  k yielding a we have
representation oP\,k/aIj as given by 1Py, [, = ka/ﬂri|fo>u||2:#<fo|ka|f0>l‘ - ,U~<f0|PVk/a|j|fo>/L

=[Py, [P =Py, [f.I2. (32
—ZMMWCW—EMWW@J (27) ‘ i
Making use of Eq(30), we further have

n#] n#]
can be obtained from vectot’élkn>ﬂ,n:1, ... k through the |||Svk|~fo>ﬂ_ 'st/a |?0>#||2: |_#<Ii_|k)‘k>/¥ (33
following equations: ' |||01|.>M||
Wi e EPRCA _ It follows then thf=1t||Pv|f°> ka, I|f°> 2 is minimum if
|a|nJ>M: |a|k> - _J|||TI(,>;||2_”’ =1,...)-1, | (I |)\k> |2/|||a:<>ﬂ||2 is minimum.
J

Successive’ applications of criterigBl) lead to an algo-
i+1, ...k (28) rithm for recursive backward approximations of the distribu-
tion. Indeed, let us assume that at the first iteration we elimi-
The proof of this Theorem, as well as the proof of the Cor-nate thejth constraint yielding a minimum of Eq31). We
ollary 2 below, are given in Ref$16,1§. then construct the new reciprocal vect@8) and the corre-
Corollary 1. Let the Lagrange multiplier vectdkX) » Sat-  sponding new Lagrange multipliers as prescribed in(Eg).
isfying Eq.(15) be given. Then, the Lagrange multiplier vec- The process is to be stopped if the approximated distribution
tor |)\k”> giving rise to the orthogonal projector onto the fails to predict the observed data within the required margin.
reduced subspa(m(,a is obtained from the prewodﬁk) as

follows: D. Numerical example

G We illustrate here a strategy consisting of the followin
W[, N, ay g g

(29  Steps

LN, = (N, =

115,12 (i) We use the data-independent selection criterion for
! discriminating independent constraints.
The proof tr|V|aIIy stems from Eq(15) using Eq(28) in Eq. " (it) We alfply Ithet %a_taédependent selection criterion on
Wi e previously selected indices.
(27), since |f ) —En 1|a| Dupllal N9, implies (i) The number of Lagrange multipliers obtained at step
(@ |?o> = <|n|)\k/,> _ (i) is reduced and the remaining multipliers recomputed.
§ e " . . A We consider the example described below.
Corollary 2. The following relation betweefXPy, |f°),| The physical model yielding the matrix elemerfts, is
andIIP\/waI |f°),J| holds: given by the Lorentzian decays:
]
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(a) n i
0.025 T L T . T FIG. 3. The simulated data after distortion by random noise.
Pn
0.02 F . - _ . o
indices(depending on the particular realization of the ¢lata
0.015 to be able to predict the 700 pieces of data within the uncer-
tainty up to which the data were generated, i.e., we require
0.01 that [[[f?),,~[f%) J2<[le) [, where|e), is a vector of com-
ponentse;=to; where, in generalt is real number in the
0.005 interval [1,3]. In this case we first set=1. The approxima-
0 tion of the corresponding distribution is depicted by the dot-
ted lines of Fig. 2a) (for five different realizations of the
-0.005 —— . ' : - : ' datg. We then increased the valuetafip tot=2 and applied
) 0100150 20303003040 40 the proposed strategy for reducing Lagrange multipliers. In

spite of the fact that the number of parameters was signifi-
FIG. 2. () The theoretical distribution is represented by the cantly reducedonly five were keptas it can be seen in Fig.
solid line. The dotted lines correspond to the approximation we2(b) the distribution is still a good approximation of the
obtain for five different realizations of the data. Each line is con-Original one. The inference to the data by this distribution is
structed by iteratively selecting constraints out of the reduced se@lso of great quality. As shown in Fig. 4, the predicted data
obtained by the data-independent technigbgThe theoretical dis- are really close to the noiseless ones. Notice that, by recourse
tribution is represented by the solid line. Each dotted line represent® our approach, we are able to denoise and compress 700

the approximation of the corresponding one(@, after the elimi-  data by using only five Lagrange multipliers.
nation of some parameters.

IV. CONCLUSIONS

1 :
fin= 1+0.0%i - 100 —n)’ i=1,...,700, In _this paper, we hqve considered _the_ prc_>blem of con-
structing theg=1/2 maximum entropy distribution from re-
n=1,...,450. (34 dundant and noisy data. A previously developed approach

has been generalized here in order to be able to incorporate,

We construct 700 VECtOd&“>#’n:1’ -+, 700 as prescribed in a straightforward manneinformation on the data errors

in Eg. (16) and select indices corresponding to the linearly
independent vectors by the technique of Sec. IlI B for elimi-
nating redundancy. Out of the redundant set of 700 vectors,,
we found 100 linearly independent ones, up to a good preci-f 0.25
sion, which is assessed by the biorthogonality quality of the
corresponding basis and its recipro¢@lial).

The experimental measures were generated considerine 0.5
that the distribution characterizing the physical system is the
sum of five Gaussian functions represented by the continu-
ous line of Fig. 2. Each data was distorted by a random error  0.05
of varianceoiz corresponding to 10% of the data value. A
realization of these data is shown in Fig. 3. The inversion
problem in this example is much more stable than the one of  -0.05 ' : ' ! . ‘
the previous example so that the results do not vary much by 0 10 200 300 400 500 600 700
weighting the data. Hence, in order to illustrate this strategy !
we use a uniform measure in all the involved procedures. FIG. 4. The theoretical data are represented by the continuous
Out of the preselected linearly independent vectors, by usingine. The dotted line corresponds to the predictions obtained by
the data-dependent strategy, we selected between 8 and &2ans of the approximation of Fig(t8.

0.2

0.1
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The advantage of this generalized approach, when dealinging the forward approach at a corresponding earlier stage.
with very noisy data, has been illustrated by a numericalThe irreversibility of the process is a consequence of the fact
simulation. that, due to the complexity of the problem, the implementa-
Additionally, a strategy for selecting relevant constraintstion of a selection criterion aiming at global optimization is
has been advanced. The corresponding implementation CoRot possible. The strategies we have presented here are only
sists of two different steps. The first step is independent opptimal at each operational step. Hence, they do not generate
the ac_:tual data, as it_ operates by d_iscriminating independeRgyersible procedures.
equationson the basis of the physical mod&he data are Considering the complexity of the mathematical problem

used,a posteriorj to reduce further the number of con- \ynich s posed by the aim of constructing, in an optimal way,
straints. The latter process is carried out through a forwarg,, q=1/2 maximum entropy distribution from redundant

and backw_ard procedur_e as fOHOWS:.F'rSt th_e Se'ec“of‘ aind noisy constraints, we believe that the well founded sub-
made starting from an initial constraint and incorporating

others, one by one, till the observed data are predicted withir(ipt.'maI strategies we haye e_mployed here should be of util-
. . ity in a broad range of situations.

a predetermined precision. Afterwards, the number of param-

eters of the distribution is reduced further by applying a

backward selection criterion for eliminating some of the

Lagrange multipliers and recalculating the remaining ones. It

should be stressed that the combination of the forward and Support from EPSREGrant No. GR/R86355/Q1is ac-

backward procedures is not, in general, equivalent to stopknowledged.
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