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The problem of constructing theq=1/2 nonextensive maximum entropy distributions from redundant and
noisy data is considered. A strategy is proposed, which evolves through the following steps.(i) Independent
constraints are first preselected by recourse to a data-independent technique to be discussed here.(ii ) The data
are a posteriori used to determine the parameters of the distribution by a previously introduced forward
approach.(iii ) A backward approach is proposed for reducing the parameters of such distribution. The previ-
ously introduced forward approach is generalized here in order to make it suitable for dealing with very noisy
data.
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I. INTRODUCTION

Among the generalized nonextensive maximum entropy
distributions, which are defined in terms of a parameterq
[1–3], the one corresponding to the valueq=1/2 hasplayed
a particular role in diverse contexts[4–9].

In this paper we focus on developing strategies for con-
structing theq=1/2 distribution which is involved in a very
special type of inverse problem: the problem of constructing
such a distribution on the basis of redundant and noisy data
(by noise we mean errors resulting from the random process
associated with the experimental measurement procedure).

It is appropriate to start by discussing why we shall re-
strict consideration to the particular valueq=1/2.

The problem of determining apq probability distribution
maximizing the entropy

Sq =

o
n=1

N

pn
q − o

n=1

N

pn

1 − q

with constraints

f i
o = o

n=1

N

pn
qf i,n, i = 1, . . . ,M ,

1 = o
n=1

N

pn
q

has been shown in Ref.[6] to be numerically equivalent to
determining the probability distributionp̃ minimizing

ip̃i1/q
1/q = o

n=1

N

p̃n
1/q

with constraints

f i
o = o

n=1

N

p̃nf i,n, i = 1, . . . ,M ,

1 = o
n=1

N

p̃n.

Since p̃n.0, it is true thatip̃i1/q is the s1/qd-norm of p̃.
Thus, the problem of choosing the parameterq is equivalent
to deciding which norm one wants to minimize as preserving
the 1-norm of the distribution. In order to analyze the situa-
tion further let us join all constraints together by defining a

sM +1d3N matrix Ã of elements Ãi,n= f i,nsi =1, . . . ,M ;n

=1, . . . ,Nd and ÃM+1,n=1sn=1, . . . ,Nd. Hence, the con-
straints are expressed in the form

fo = Ãp,

wherefo is a vector ofsM +1d componentsf1
o, . . . ,fM

o ,1. It is
well known from linear algebra that the general solution to
this underdetermined linear system can be expressed as

p̃ = A8̃−1fo + p8,

whereA8̃−1 is the pseudoinverse ofÃ, andp8 a vector in the

null space of matrixÃ. Consequently, the problem of decid-
ing on theq parameter is tantamount to just choosing a vec-

tor p8 in the null space ofÃ. In particular, the choiceq
=1/2 (which as already discussed is equivalent to minimiz-
ing the 2-norm of thep̃ distribution) implies to setp8=0.

This follows from the fact that, since vectorÃ−1fo and vector
p8 are orthogonal with each other, one has

ip̃i2
2 = iÃ−1foi2

2 + ip8i2
2.

Hence, by settingp8=0 the solution of minimum 2-norm is
obtained. For a number of reasons, which are listed below,
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we believe that this leads to the most suitable choice for the
parameterq in relation to our problem.

(1) The underdetermined problem we have to solve is of
the following special nature: We have less independent equa-
tions than unknowns, but there is a large number of redun-
dant equations and a number of irrelevant ones[7]. If the
data were noiseless, the role of such equations would be
simply to verify the ability of the distribution to make correct
predictions. Since the data are noisy we use all the equations
with the purpose of reducing the effect of the noise, but not
as independent constraints(in most cases the number of
Lagrange multipliers is much less than the actual number of
available constraints). Our task is to identify a subset of such
independent constraints. The predictive power of our solu-
tion is assesseda posterioriby its capability of predicting the
denoised data.

(2) The constraints typically represent measurements ob-
tained as a function of some variable parameters: Intensity
versus diffraction angle, magnetization versus magnetic field,
etc.[12,13]. It is then natural to represent such measurements
as linear functionals on the identical vector. Each linear func-
tional provides a projection on the particular parameter value
which is specified by the measurement instrument state[12].
It is clear then that in the space of the data it is appropriate to
define a distance through the norm induced by the inner
product. In our formalism both the space of the data and the
space of the system are assumed to be Hilbert spaces. The
only 1/q norm induced by a Hilbert space is the one corre-
sponding toq=1/2.

(3) As mentioned above, to choose a value ofq other
than q=1/2 would imply to let the corresponding distribu-
tion have a component in the null space of the transformation
generated by the constraints. In the type of problem de-
scribed in(2) above such a null space is of a ‘chaotic’ nature
(in the sense that arbitrarily small numerical perturbation on

any of the elements of matrixÃ would produce an enormous
distortion in the solution). We certainly wish to avoid this.

Unfortunately, in our context deciding on the appropriateq
value of the distribution we wish to construct does not solve
the problem of its optimal construction. While it is true that
the problem of determining theq=1/2 distribution from a
fixed set of constraints is a simple linear problem[5], the
problem becomes highly nonlinear when this distribution is
to be determined optimally from a subset of constraints
which are taken out of a much larger set of possible ones.

Consider that from a set ofM constraints we want to
select a subset ofk ones and associate a parameter(Lagrange
multiplier) to each equation. Let us indicate asps1/2dskd the
distribution associated with the correspondingk equations.
Hence the problems we have to face are the following(a) the
selection of the optimalk constraints and(b) the estimation
of the correspondingk parameters determining the distribu-
tion. In order to address these problems, let us specify the
meaning of “optimal selection” in our context: we say that a
selection is optimal if it yields a distribution capable of sat-
isfactorily predicting all the available data involving the
minimum number of parameters. Unfortunately the search
for such an optimal selection is not in general possible, as it

poses a NP-hard problem, i.e., unreachable in polynomial
time with classical computers[10,11]. Hence we are forced
to ascertain suitable suboptimal strategies, which also pose
an open problem because there is not a unique way of con-
structing suboptimal solutions.

In some recent publications we have introduced a subop-
timal iterative strategy, which is only optimal at each itera-
tion step[7,8]. Such an approach is a forward data-dependent
approach for subset selection. At each iteration, the indices
obtained in the previous steps are fixed, and a new index is
chosen in such a way that the distance between the observed
data and the ones predicted by the physical model is mini-
mized. Since the selection is only optimal at each step, the
selected set of indices is, of course, not optimal in the above
specified sense. Some indices that are relevant at a particular
step may become much less relevant at the end of the pro-
cess. It is then natural to try and eliminate the parameters
corresponding to such indices. Again, the process of reduc-
ing parameters in an optimal way is, in general, a NP-
problem and we need to address it by suboptimal strategies.
Here we propose a strategy for reducing parameters that we
call backward selection. This approach provides both the cri-
terion for selecting the parameters to be deleted and the tech-
nique for properly modifying the ones to be retained. An
approach for selecting independent constraints in the absence
of data will also be advanced here, with the aim of designing
a suboptimal strategy consisting of the following steps.

(i) Before the experiment is carried out we select a subset
of indices corresponding to independent constraints.

(ii ) The forward selection approach proposed in Ref.[8]
is then applied for selecting indices, from the preselected set,
in order to construct the distribution when the data are avail-
able.

(iii ) Finally the backward selection approach is applied in
order to reduce further the number of parameters of the dis-
tribution. Such backward selection is made possible in a fast
and efficient way by means of a backward adaptive bior-
thogonalization technique.

Before advancing the above described strategy we would
like to discuss how it is possible to adapt the strategy of Ref.
[8] so as to make it suitable when dealing with very noisy
data. This is achieved by introducing a vectorial space with
inner product defined with respect to a measure depending
on the experimental data, or their corresponding statistics.

The paper is organized as follows. The generalization of
the previous approach, to turn it suitable when dealing with
very noisy data, is introduced in Sec. II. Section III discusses
the criteria for selecting relevant constraints. First, the selec-
tion criterion proposed in Ref.[7] is generalized and a nu-
merical experiment is presented in order to illustrate the ad-
vantage of such a generalization. We then discuss a data-
independent selection criterion. In Sec. III we introduce a
backward procedure for eliminating constraints and, conse-
quently, for properly adapting the concomitant parameters of
the distribution. Section III C provides the foundations of the
strategy that we illustrate by a numerical example in Sec.
III D. The conclusions are drawn in Sec. IV.

II. GENERALIZING THE PREVIOUS APPROACH

Let us assume that we are givenM pieces of data
f1
o, f2

o, . . . ,f i
o, . . . ,fM

o , each of which is the expectation value
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of a random variable that takes valuesf i,n,n=1, . . . ,N ac-
cording to the q=1/2 probability distribution pn

1/2,n
=1, . . . ,N [7,8], i.e.,

f i
o = o

n=1

N

pn
1/2f i,n, i = 1, . . . ,M . s1d

The dataf1
o, f2

o, . . . ,f i
o, . . . ,fM

o will be represented as compo-
nents of a vectorufolm in a vector space, sayDM. A central
aim of this contribution is to allow for the possibility of
assigning a different weight to each data. Accordingly, the
inner product inDM, which we indicate asmk·u ·lm, is defined
with respect to a measuremsmd as follows.

For everyf andg in DM,

mkf uglm = o
i=1

M

f̄ igimi , s2d

where f̄ i indicates the complex conjugate off. In the present

situation we deal with real vectors, thereby,f̄ i ; f i. The data
space, with the corresponding associated measure, will be
denoted asDMsmd and the standard orthogonal basis in
DMsmd will be represented by vectorsuilm , i =1, . . . ,M. The
identity operator inDMsmd is thus expressed as

Îm = o
i=1

M

uilmmimki u s3d

with vectorsuilm , i =1, . . . ,M satisfying the relations

mimki u jlm = di,j sor 0 if mi = 0d. s4d

Accordingly, vectorufolm is expressed:

ufolm = o
i=1

M

uilmmimki ufolm = o
i=1

M

mi f i
ouilm. s5d

The measurem, rendering a weighted distance between two
vectors inDMsmd, will be chosen in relation to the observed
data. For example, if the variances of the data are known and
we denote bysi

2 the variance of dataf i
o, the choicemi =si

−2,
gives rise to the square distance betweenufolm and uglm

PDMsmd as given by

iufolm − uglmi2 = mkfo − gufo − glm = o
i=1

M

sf i
o − gid2 1

si
2 . s6d

The above distance is known to be optimal, in a maximum
likelihood sense, if the data errors are Gaussian distributed
[14].

The space of the physical system is considered to be the
EuclideanN-dimensional real spaceRN. The standard or-
thogonal basis inRN will be indicated by vectorsunl ,n
=1, . . . ,N, so that every vectorurlPRN is represented as

url = o
n=1

N

knurlunl = o
n=1

N

rnunl. s7d

For any two vectorsuvl and url in RN the inner product is
defined as

kvurl = o
n=1

N

kvunlknurl = o
n=1

N

vnrn. s8d

Using the adopted vector notation, Eqs.(1) are recast:

ufolm = Âmup1/2l s9d

with

up1/2l = o
n=1

N

unlknup1/2l = o
n=1

N

pn
1/2unl, s10d

and operatorÂm :RN→DMsmd given by

Âm = o
n=1

N

ufnlmknu. s11d

Vectors ufnlmPDMsmd are defined in such a way that

mki u fnlm
m= f i,n, i.e.,

ufnlm = o
i=1

M

uilmmimki uflm = o
i=1

M

mi f i,nuilm. s12d

In the line of Ref.[7], in order to determine the maximum
entropy up1/2l distribution we consider as constraint of the
optimization process, a subset ofk equations(1) labeled by
indicesl j , j =1, . . . ,k. This leads to the following expression
for the distribution:

ups1/2dskdl = S 1

N
−

1

N
o
j=1

k

mkgul jlmmkl julklmDo
n=1

N

unl

+ o
j=1

k

Âm
† ul jlmmkl julklm s13d

with

uglm = o
n=1

N

ufnlm ; o
n=1

N

Âmunl. s14d

The superscriptk in ups1/2dskdl given above indicates that the
distribution is built out ofk constraints. The Lagrange mul-
tiplier vector ulskdl is determined by the requirement that

up1/2skdl predicts a complete data vectorufplm=Âmups1/2dskdl
PDMsmd minimizing the distance to the observed vector
ufolm. This is actually the prescription given in Ref.[7]. Nev-
ertheless, the fact that here the distance is defined with re-
spect to a measure, which we propose to be dependent on the
experimental data, implies that the formalism of Ref.[7]
needs to be adapted to this requirement. In subsequent sec-
tions, we discuss how this can be achieved in a straightfor-
ward manner by means of a recursive biorthogonalization
technique for computing the Lagrange multipliers which de-
termineups1/2dskdl.

A. Determination of Lagrange multipliers

In order to estimate the Lagrange multipliers determining
Eq. (13) we minimize the distance between the prediction
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through the physical model and observed data. As discussed
in Refs.[7,8] this entails to determine the Lagrange multipli-
ers as

o
j=1

k

ual j
lmmkl julskdlm = F̂kulskdlm = P̂Vk

u f̃ olm, s15d

where we have denotedF̂k=o j=1
k ual j

lmkl ju, with

ual j
lm = o

n=1

N

ufnlmmkfnul jl −
1

N
uglmmkgul jl. s16d

Vector u f̃ olm is obtained from the data vector asu f̃ olm= ufolm

−suglm /Nd and P̂Vk
is the orthogonal projector onto the sub-

space spanned byual j
lm , j =1, . . . ,k. Here we wish this pro-

jector to account for the different weights of the data. This
will be achieved by recourse to a biorthogonalization tech-
nique [15] which, as applied in this context, produces bior-
thogonal vectors dependent on the weight assigned to each
data.

Given a set of vectorsualn
lm ,n=1, . . . ,M, we set uc1lm

= ual1
lm and inductively define vectorsuc̃˜ k+1lm as

uc̃˜ k+1lm =
uck+1lm

iuck+1lmi2 s17d

with

uck+1lm = ualk+1
lm − P̂Vk

ualk+1
lm. s18d

The dual vectorsmkãln
k+1u ,n=1, . . . ,k+1, which are obtained

from the recursive equations

mkãln
k+1u = mkãln

k u − mkãln
k ualk+1

lmmkc̃˜ k+1u, n = 1, . . . ,k,

mkãlk+1

k+1u = mkck+1u

mkck+1ualk+1
lm

= mkck+1u

mkck+1uck+1lm

= mkc̃˜ k+1u,

s19d

satisfy the following properties.
(a) They are biorthogonal with respect to vectors

ualn
lm ,n=1, . . . ,k+1, i.e.,

mkãln
k+1ualm

lm = dlm,ln
, n = 1, . . . ,k + 1, m= 1, . . . ,k + 1.

s20d

(b) They provide a representation of the orthogonal
projection operator ontoVk+1 as given by

P̂Vk+1
= o

n=1

k+1

ualn
lmmkãln

k+1u = P̂Vk+1

† = o
n=1

k+1

uãln
k+1lmmkaln

u.

s21d

The proof ofsad and sbd parallels that of Refs.f15,16g, for
the case of the standard Euclidean measure.

It follows from Eqs.(21) and(15) that the Lagrange mul-
tipliers yielding ups1/2dsk+1dl are obtained according to the re-
cursive relation

mklnulsk+1dlm = klnulskdlm − mkãln
k ualk+1

lmmklk+1ulsk+1dlm,

n = 1, . . . ,k

mklk+1ulsk+1dlm = mkc̃˜ k+1u f̃ olm s22d

with mkl1uls1dlm=mkal1
u f̃ olm / iual1

lmi2.
In writing down the above equations we confidently as-

sume that the indicesln,n=1, . . . ,k+1 are given to us. Of
course, we must choose them somehow. How? The question
does not possess a unique suitable answer, though. We tackle
this problem below.

III. SELECTION OF INDICES

The problem of deciding on the indicesln,n=1, . . . ,k to
be considered in the construction of theup1/2skdl distribution
is far from being a simple one. One would like, of course, to
choose the smallest set of indices allowing to minimize the
distance between the observed vector and the physical
model. Unfortunately, as already mentioned the search for a
global minimum is an NP-hard problem in most cases. A
sensible simplification is obtained by resigning the goal of
global minimization and accepting a less ambitious subopti-
mal solution which arises from the following iterative proce-
dure: At each iteration the indices obtained in the previous
steps are fixed, and a new index is chosen so as to minimize
the distance between the data vector and the vector predicted
by the physical model. This is basically the strategy of the
forward selection approach proposed in Refs.[7,8]. Such
strategy, useful indeed in many situations, is just one among
the many possible suboptimal strategies that one can envis-
age. Here we advance an approach which is built out of two
main ingredients:(i) a data-independent technique for select-
ing constraints to be discussed in Sec. III B; and(ii ) a back-
ward selection approach for reducing the number of param-
eters of a given distribution. To address the latter we need a
technique evolving in the reverse direction with respect the
forward technique of Refs.[7,8]. In this case the two chal-
lenges we have to face are the following.

(a) The one of deciding on the parameters to be elimi-
nated.

(b) The one of appropriately modifying the parameters
one wishes to retain.

These two points are addressed in Sec. III C by recourse
to a backward birthogonalization approach. Before advanc-
ing our strategy we would like to illustrate how the forward
selection approach of Refs.[7,8], can be adapted in a
straightforward manner in order to make it suitable when
dealing with very noisy data. This is the subject of Sec. III A.

A. Data-dependent selection criterion

As proposed in Refs.[7,8], a set of subindicesln,n
=1, . . . ,k+1 can be iteratively determined by selecting, at
iteration k+1, the index lk+1 corresponding to a vector
ualk+1

lm [cf. Eq. (16)] that minimizes the norm of the residual
resulting when approximating the observed data by the
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physical model. This process is tantamount to selecting the
index lk+1 that maximizes the functionals[7]

en = umkc̃nu f̃ olmu2, n = 1, . . . ,M s23d

with uc̃nlm= ucnlm / iucnlmi and ucnlm= uanlm− P̂Vk
uanlm.

At this point, we would like to illustrate the advantage of
allowing different weights for each data. We use the same
example as in Ref.[7], i.e., the data are generated as

f i
o = o

n=1

50

pnf i,n + ei, i = 1, . . . ,100 s24d

with pn represented by the continuous line of Fig. 1 and
f i,n=exps−nxid ,xi =0.01i , i =1, . . . ,100,n=1, . . . ,50. This is
an extremely bad conditioned problem. In order to have a
good approximation of the distribution of Fig. 1, it was as-
sumed in Ref.[7] that we know the data within an uncer-
tainty of 0.1%. Here we consider the errors to be much
larger. Each data is distorted by a zero mean Gaussian dis-
tributed random variable of variancesi

2 corresponding to
20% of the data value. If, as in Ref.[7], we consider a
uniform measuresm=1d, the approximation we obtain is rep-
resented by the dotted lines of Fig. 1(a) (for two different
realizations of the data). As we clearly gather from Fig. 1(b),

by considering a nonuniform measure given asmi =si
−2, i

=1, . . . ,100 the approximation is enormously improved and
becomes stable against different realization of the data.

B. Data-independent selection criterion

This alternative criterion for selecting indices is indepen-
dent of the actual data. It is meant to speed up the posterior
selection process and is grounded on the fact that redundant
equations arise as a consequence of a physical model. Hence,
redundancy can be detected without the actual realization of
the experimental measurements. In our formalism, each con-
straint, thelk one, say, is associated with a vectorualk

lm.
Hence the problem of discriminating linearly independent
constraints is equivalent to the problem of discriminating
linearly independent vectors. We address this problem by
recourse to a recently introduced technique[17], which al-
lows for a hierarchical selection giving rise to a stable in-
verse problem. The goal is achieved by selecting, at each
step, the indexlk maximizing the ratios

rn =
iucnlmi2

iuanlmi2, n = 1, . . . ,M . s25d

This data-independent technique for eliminating redundancy
makes the posterior data processing much faster, as the se-
lection of indices for constructing the distribution can be
carried out only on those indices rendering independent vec-
tors. There is also room for different postprocessing strate-
gies because, specially when the data are very noisy, the
number of required Lagrange multipliers happens to be
smaller than the number of indices rendering “numerical in-
dependence.” One possibility is to apply the selection crite-
rion discussed in the preceding section, but only on the pre-
selected indices. Additional reduction of Lagrange
multipliers is made possible by a backward strategy to be
introduced in the following section.

C. Reducing Lagrange multipliers

As already discussed, the fact that Lagrange multipliers
are associated with constraints that are selected on a step by
step basis implies that at the end of the selection process,
some Lagrange multipliers may have diminished relevance.
To be in a position to eliminate Lagrange multipliers of little
relevance, we need to develop an appropriate technique.

Consider that we wish to reduce the numberk of
Lagrange multipliers characterizing aups1/2dskdl distribution.
Even if we know which particular parameter should be dis-
regarded, the actual process of removing them yields a non-
linear problem. The nonlinearity follows from Eq.(15)
where the Lagrange multipliers in the left-hand side of the
equation are the coefficients of a linear superposition of non-
orthogonal vectors. The right-hand side indicates that such a

superposition is the orthogonal projection of the vectoru f̃ olm

onto the subspace generated by vectorsual j
lm , j =1, . . . ,k.

Thus, within the framework of this paper, the decision of
eliminating some Lagrange multipliers comes along with the
aim of leaving the vector orthogonal projection onto the re-
duced subspace. This entails that we must recalculate the

FIG. 1. (a) The theoretical distribution is represented by the
solid line. Each dotted line corresponds to the approximation we
obtain by using a uniform measuresm=1d for two different realiza-
tion of the data.(b) The theoretical distribution is represented by the
solid line. Each dotted line corresponds to the approximation we
obtain(for five different realizations of the experiment) by weight-
ing each data with a measuremi =si

−2.

CONSTRUCTIVE APPROXIMATIONS TO THEq=1/2… PHYSICAL REVIEW E 70, 021104(2004)

021104-5



remaining Lagrange multipliers. The need for recalculating
coefficients of a nonorthogonal linear expansion, when
eliminating some others, is discussed in Ref.[18] where a
backward biorthogonalization approach is advanced. Such a
technique, which we describe next, has been devised in order
to modify biorthogonal vectors so as to appropriately repre-
sent the orthogonal projector onto a reduced subspace.

Let us recall thatVk=spanhual1
lm , . . . ,ualk

lmj and letVk/al j
denote the subspace which is left by removing the vector
ual j

lm from Vk, i.e,

Vk/al j
= spanhual1

lm, . . . ,ual j−1
lm,ual j+1

lm, . . . ,ualk
lmj.

s26d

We have already discussed how to construct the orthogonal
projector ontoVk [cf. Eq. (21)]. In order to represent the
orthogonal projector onto the reduced subspaceVk/al j

the cor-

responding biorthogonal vectorsuãln
k lm need to be modified

as established by the following theorem.
Theorem 1. Given a set of vectorsuãln

k lm ,n=1, . . . ,k bior-
thogonal to vectorsualn

lm ,n=1, . . . ,k and yielding a repre-

sentation ofP̂Vk
as given in Eq.(21), a new set of biorthogo-

nal vectors uãln
k/ jlm ,n=1, . . . ,j −1,j +1, . . . ,k yielding a

representation ofP̂Vk/al j

as given by

P̂Vk/al j

= o
n=1
nÞ j

k

ualn
lmmkãln

k/ ju = o
n=1
nÞ j

k

uãln
k/ jlmmkaln

u s27d

can be obtained from vectorsuãln
k lm ,n=1, . . . ,k through the

following equations:

uãln
k/ jlm = uãln

k lm −
uãl j

klmmkãl j
k uãln

k lm

iuãl j
klmi2 , n = 1, . . . ,j − 1,

j + 1, . . . ,k. s28d

The proof of this Theorem, as well as the proof of the Cor-
ollary 2 below, are given in Refs.[16,18].

Corollary 1. Let the Lagrange multiplier vectorulklm sat-
isfying Eq.(15) be given. Then, the Lagrange multiplier vec-
tor ulk/ jlm giving rise to the orthogonal projector onto the
reduced subspaceVk/al j

is obtained from the previousulklm as

follows:

mklnulk/ jlm = mklnulklm −
mkãln

k uãl j
klmmkl julklm

iuãl j
klmi2 . s29d

The proof trivially stems from Eq.(15) using Eq.(28) in Eq.

(27), since P̂Vk/al j

u f̃ olm=on=1
nÞ j

k
ualn

lmmklnulk/ jlm implies

mkãln
k/ j u f̃ olm=mklnulk/ jlm.

Corollary 2. The following relation betweenikP̂Vk
u f̃ olmi

and iP̂Vk/al j

u f̃ olmi holds:

iP̂Vk/al j

u f̃ olmi2 = iP̂Vk
u f̃ olmi2 −

umkl julklmu2

iuãk
l jlmi2

. s30d

Corollary 1 gives us a prescription to modify the Lagrange
multipliers characterizing ak-parameters distribution, if one
of such multipliers is to be removed. Nevertheless, still the
question has to be addressed as to how to choose the
Lagrange multiplier to be disregarded. Corollary 2 suggests
how the selection can be made optimal. The following
proposition is in order.

Proposition 1. Let the Lagrange multipliersmklnulklm ,n
=1, . . . ,k and mklnulk/ jlm ,n=1, . . . ,j −1,j +1, . . . ,k be ob-
tained from Eqs.(15) and (29), respectively. The Lagrange
multiplier mkl j ulklm to be removed for minimizing the norm

of the residual erroruDlm= P̂Vk
u f̃ olm− P̂Vk/al j

u f̃ olm is the one

yielding a minimum value of the quantities

umkl julklmu2

iuãl j
klmi2 , j = 1, . . .M . s31d

Proof. Since on the one handP̂Vk
P̂Vk/al j

= P̂Vk/al j

P̂Vk
= P̂Vk/al j

and on the other hand orthogonal projectors are idempotent
we have

iP̂Vk
u f̃ olm − P̂Vk/al j

u f̃ olmi2=mk f̃ ouP̂Vk
u f̃ olm − mk f̃ ouP̂Vk/al j

u f̃ olm

=iP̂Vk
u f̃ olmi2 − iP̂Vk/al j

u f̃ olmi2. s32d

Making use of Eq.(30), we further have

iP̂Vk
u f̃ olm − P̂Vk/al j

u f̃ olmi2 =
umkl julklmu2

iuãl j
klmi2 . s33d

It follows then thatiP̂Vk
u f̃ olm− P̂Vk/al j

u f̃ olmi2 is minimum if

umkl j ulklmu2/ iuãl j
klmi2 is minimum.

Successive applications of criterion(31) lead to an algo-
rithm for recursive backward approximations of the distribu-
tion. Indeed, let us assume that at the first iteration we elimi-
nate thej th constraint yielding a minimum of Eq.(31). We
then construct the new reciprocal vectors(28) and the corre-
sponding new Lagrange multipliers as prescribed in Eq.(29).
The process is to be stopped if the approximated distribution
fails to predict the observed data within the required margin.

D. Numerical example

We illustrate here a strategy consisting of the following
steps

(i) We use the data-independent selection criterion for
discriminating independent constraints.

(ii ) We apply the data-dependent selection criterion on
the previously selected indices.

(iii ) The number of Lagrange multipliers obtained at step
(ii ) is reduced and the remaining multipliers recomputed.

We consider the example described below.
The physical model yielding the matrix elementsf i,n is

given by the Lorentzian decays:
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f i,n =
1

1 + 0.01si − 100 −nd2, i = 1, . . . ,700,

n = 1, . . . ,450. s34d

We construct 700 vectorsuanlm ,n=1, . . . ,700 as prescribed
in Eq. (16) and select indices corresponding to the linearly
independent vectors by the technique of Sec. III B for elimi-
nating redundancy. Out of the redundant set of 700 vectors
we found 100 linearly independent ones, up to a good preci-
sion, which is assessed by the biorthogonality quality of the
corresponding basis and its reciprocal(dual).

The experimental measures were generated considering
that the distribution characterizing the physical system is the
sum of five Gaussian functions represented by the continu-
ous line of Fig. 2. Each data was distorted by a random error
of variancesi

2 corresponding to 10% of the data value. A
realization of these data is shown in Fig. 3. The inversion
problem in this example is much more stable than the one of
the previous example so that the results do not vary much by
weighting the data. Hence, in order to illustrate this strategy
we use a uniform measure in all the involved procedures.
Out of the preselected linearly independent vectors, by using
the data-dependent strategy, we selected between 8 and 12

indices(depending on the particular realization of the data)
to be able to predict the 700 pieces of data within the uncer-
tainty up to which the data were generated, i.e., we require
that iufplm− ufolmi2, iuelmi2, where uelm is a vector of com-
ponentsei = tsi where, in general,t is real number in the
interval [1,3]. In this case we first sett=1. The approxima-
tion of the corresponding distribution is depicted by the dot-
ted lines of Fig. 2(a) (for five different realizations of the
data). We then increased the value oft up to t=2 and applied
the proposed strategy for reducing Lagrange multipliers. In
spite of the fact that the number of parameters was signifi-
cantly reduced(only five were kept) as it can be seen in Fig.
2(b) the distribution is still a good approximation of the
original one. The inference to the data by this distribution is
also of great quality. As shown in Fig. 4, the predicted data
are really close to the noiseless ones. Notice that, by recourse
to our approach, we are able to denoise and compress 700
data by using only five Lagrange multipliers.

IV. CONCLUSIONS

In this paper, we have considered the problem of con-
structing theq=1/2 maximum entropy distribution from re-
dundant and noisy data. A previously developed approach
has been generalized here in order to be able to incorporate,
in a straightforward manner,information on the data errors.

FIG. 2. (a) The theoretical distribution is represented by the
solid line. The dotted lines correspond to the approximation we
obtain for five different realizations of the data. Each line is con-
structed by iteratively selecting constraints out of the reduced set
obtained by the data-independent technique.(b) The theoretical dis-
tribution is represented by the solid line. Each dotted line represents
the approximation of the corresponding one in(a), after the elimi-
nation of some parameters.

FIG. 3. The simulated data after distortion by random noise.

FIG. 4. The theoretical data are represented by the continuous
line. The dotted line corresponds to the predictions obtained by
means of the approximation of Fig. 2(b).
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The advantage of this generalized approach, when dealing
with very noisy data, has been illustrated by a numerical
simulation.

Additionally, a strategy for selecting relevant constraints
has been advanced. The corresponding implementation con-
sists of two different steps. The first step is independent of
the actual data, as it operates by discriminating independent
equationson the basis of the physical model. The data are
used, a posteriori, to reduce further the number of con-
straints. The latter process is carried out through a forward
and backward procedure as follows: First the selection is
made starting from an initial constraint and incorporating
others, one by one, till the observed data are predicted within
a predetermined precision. Afterwards, the number of param-
eters of the distribution is reduced further by applying a
backward selection criterion for eliminating some of the
Lagrange multipliers and recalculating the remaining ones. It
should be stressed that the combination of the forward and
backward procedures is not, in general, equivalent to stop-

ping the forward approach at a corresponding earlier stage.
The irreversibility of the process is a consequence of the fact
that, due to the complexity of the problem, the implementa-
tion of a selection criterion aiming at global optimization is
not possible. The strategies we have presented here are only
optimal at each operational step. Hence, they do not generate
reversible procedures.

Considering the complexity of the mathematical problem
which is posed by the aim of constructing, in an optimal way,
the q=1/2 maximum entropy distribution from redundant
and noisy constraints, we believe that the well founded sub-
optimal strategies we have employed here should be of util-
ity in a broad range of situations.
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